Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties
نویسندگان
چکیده
Conductive silicone rubber has great advantages for tactile sensing applications. The electrical behavior of the elastomeric material is rate-dependent and exhibit hysteresis upon cyclic loading. Several constitutive models were developed for mechanical simulation of this material upon loading and unloading. One of the successful approaches to model the time-dependent behavior of elastomers is Bergstrom– Boyce model. An adaptive neuro-fuzzy inference system (ANFIS) model will be established in this study to predict the stress–strain changing of conductive silicone rubber during compression tests. Various compression tests were performed on the produced specimens. An ANFIS is used to approximate correlation between measured features of the material and to predict its unknown future behavior for stress changing. ANFIS has unlimited approximation power to match any nonlinear functions well and to predict a chaotic time series. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Applications and Adaptive Neuro-Fuzzy Estimation of Conductive Silicone Rubber Properties
Primljeno (Received): 2011-10-10 Prihvaćeno (Accepted): 2012-01-22 Original scientific paper The paper summarizes the results of investigations on the conductive silicone rubber as strain sensor and presents a segment of the project for developing the new principle of a universal gripper with adaptable shape morphing surfaces. An experimental investigation of the sensors subjected to different ...
متن کاملInternational Conference on Production Engineering
Conductive silicone rubber has great advantages for strain sensing applications. The electrical behavior of the elastomeric material is rate-dependent and exhibit hysteresis upon cyclic loading. Several constitutive models were developed for mechanical simulation of this material upon loading and unloading. One of the successful approaches to model the time-dependent behavior of elastomers is B...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کاملEstimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS)
The proximate analysis is the most common form of coal evaluation and it reveals the quality of a coal sample. It examines four factors including the moisture, ash, volatile matter (VM), and fixed carbon (FC) within the coal sample. Every factor is determined through a distinct experimental procedure under ASTM specified conditions. These determinations are time consuming and require a signific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012