Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties

نویسندگان

  • Dalibor Petkovic
  • Mirna Issa
  • Nenad D. Pavlovic
  • Nenad T. Pavlovic
  • Lena Zentner
چکیده

Conductive silicone rubber has great advantages for tactile sensing applications. The electrical behavior of the elastomeric material is rate-dependent and exhibit hysteresis upon cyclic loading. Several constitutive models were developed for mechanical simulation of this material upon loading and unloading. One of the successful approaches to model the time-dependent behavior of elastomers is Bergstrom– Boyce model. An adaptive neuro-fuzzy inference system (ANFIS) model will be established in this study to predict the stress–strain changing of conductive silicone rubber during compression tests. Various compression tests were performed on the produced specimens. An ANFIS is used to approximate correlation between measured features of the material and to predict its unknown future behavior for stress changing. ANFIS has unlimited approximation power to match any nonlinear functions well and to predict a chaotic time series. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications and Adaptive Neuro-Fuzzy Estimation of Conductive Silicone Rubber Properties

Primljeno (Received): 2011-10-10 Prihvaćeno (Accepted): 2012-01-22 Original scientific paper The paper summarizes the results of investigations on the conductive silicone rubber as strain sensor and presents a segment of the project for developing the new principle of a universal gripper with adaptable shape morphing surfaces. An experimental investigation of the sensors subjected to different ...

متن کامل

International Conference on Production Engineering

Conductive silicone rubber has great advantages for strain sensing applications. The electrical behavior of the elastomeric material is rate-dependent and exhibit hysteresis upon cyclic loading. Several constitutive models were developed for mechanical simulation of this material upon loading and unloading. One of the successful approaches to model the time-dependent behavior of elastomers is B...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Nusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)

In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...

متن کامل

Estimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS)

The proximate analysis is the most common form of coal evaluation and it reveals the quality of a coal sample. It examines four factors including the moisture, ash, volatile matter (VM), and fixed carbon (FC) within the coal sample. Every factor is determined through a distinct experimental procedure under ASTM specified conditions. These determinations are time consuming and require a signific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012